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Outline

Mind map

No evidence of extending GR from cosmography (and other experimental tests) =⇒ solving the CC problem

reconciles inflation with the dark sector =⇒ reformulating the concordance paradigm, namely the ΛCDM

model!
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Overview of modern cosmology

Cosmology and Cosmography

The cosmological principle: Homogeneity and isotropy.

ds2 = dt2 − a(t)2

[
dr 2

1− kr 2
+ r 2

(
sin2 θdφ2 + dθ2

)]
Undisclosed dark energy and dark matter’s natures: Understanding their “microphysics” would open
new theoretical scenarios.

H2 =
1

3
ρ−

k

a2
Ḣ + H2 =

1

6
(3P + ρ)

A model of the Universe should answer these questions:

1 How did the Universe evolve in the past (Big Bang, inflation, etc.)?

2 Is the Universe currently dominated by exotic dark matter and energy?

3 Will the Universe expand forever or will it collapse (what is its destiny)?

Figure: The dark Universe.
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Overview of modern cosmology

The ΛCDM paradigm: The concordance (background) model

...and the concordance model?

The standard ΛCDM paradigm is jeopardized by two main caveats:

Fine-tuning:
ρΛ

ρP
'

5.96× 10−27 kg/m3

5.16× 1096 kg/m3
∼ 10−123

Coincidence:
ρΛ

ρm
∝ a3 and yet Ωm ≈ 0.3, ΩΛ ≈ 0.7
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A model-independent treatment: Cosmography

A model-independent treatment: Cosmography

Taylor expansion of the scale factor (assuming flat FRW Universe):

a(t) = 1 +
∞∑
k=1

1

k!

dka

dtk

∣∣∣∣
t=t0

(t − t0)k

Cosmographic series:

H(t) ≡ 1

a

da

dt
, q(t) ≡ − 1

aH2

d2a

dt2
, j(t) ≡ 1

aH3

d3a

dt3
, s(t) ≡ 1

aH4

d4a

dt4

Luminosity distance and Hubble expansion rate:

dL(z) = (1 + z)

∫ z

0

dz ′

H
=

1

H0

(
c1z + c2z

2 + c3z
3 + c4z

4
)

+O(z5)

H(z) =

[
d

dz

(
dL(z)

1 + z

)]−1

= H0

[
1 + H(1)z + H(2) z

2

2
+ H(3) z

3

6

]
+O(z4)

H(1) = 1 + q0 , H(2) = j0 − q2
0 , H(3) = 3q2

0 + 3q3
0 − j0(3 + 4q0)− s0

[Aviles, Gruber, Luongo, Quevedo, PRD, 86, 123516, (2012)]
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A model-independent treatment: Cosmography

Limits of standard cosmography:

the radius of convergence of the Taylor series is restricted to |z| < 1;

when cosmological data at z > 1 are used, the Taylor series do not provide a good
approximation of the luminosity distance due to its divergent behavior;

finite truncations propagate errors that may result in possible misleading outcomes.

Introducing a “new” cosmography: The use of rational polynomials

they extend the radius of convergence of Taylor series;

they can better approximate situations at high-redshift domains;

the series can be modelled by choosing appropriate orders depending on each case of
interest.

=⇒ Proposing the first attempts toward high redshift cosmography:

1 Padé rational series.

2 Chebyshev rational polynomials.

[Dunsby, Luongo, IJGMMP, 13, 1630002 (2016)]
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A model-independent treatment: Cosmography

Cosmography with Padé and Chebyshev polynomials

Padé polynomials: Given f (z) =
∞∑
i=0

ciz
i , ci = f (i)(0)/i !, the (N,M) Padé series

reads

PN,M(z) =

N∑
n=0

anz
n

1 +
M∑

m=1

bmz
m

,



PN,M(0) = f (0)

P ′N,M(0) = f ′(0)

...

P
(N+M)
N,M (0) = f (N+M)(0)

Chebyshev polynomials: Given the first kind Chebyshev polynomials
Tn(z) = cos(nθ) , n ∈ N0 , θ = arccos(z), with f (z) =

∑∞
k=0
′ckTk(z), a (n,m)

rational Chebyshev approximation of f (z) reads:

Rn,m(z) =

n∑
i=0

′ aiTi (z)

m∑
j=0

′ bjTj(z)

[Gruber, Luongo, PRD, 89, 103506 (2014)]
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A model-independent treatment: Cosmography

Comparison among different
cosmographic techniques

Figure: (2,1) rational Chebyshev
approximation of the luminosity
distance for the ΛCDM model with the
correspondent Padé and Taylor
approximations.

Parameter
Taylor Padé Rational Chebyshev

Mean 1σ R.E. Mean 1σ R.E. Mean 1σ R.E.

H0 65.80 +2.09
−2.11 3.19% 64.94 +2.11

−2.02 3.17% 64.95 +1.89
−1.94 2.95%

q0 −0.276 +0.043
−0.049 16.8% −0.285 +0.040

−0.046 15.1% −0.278 +0.021
−0.021 7.66%

j0 −0.023 +0.317
−0.397 1534% 0.545 +0.463

−0.652 102% 1.585 +0.497
−0.914 44.5%

Table: 68% confidence level constraints and relative errors from the MCMC analysis of
SN+OHD+BAO data for the fourth-order Taylor, (2,2) Padé and (2,1) rational Chebyshev
polynomial approximations of the luminosity distance.

[Capozziello, D’Agostino, Luongo, MNRAS, 476, 3924 (2018)]
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A model-independent treatment: Cosmography

Modified gravity: f (T ) and Extended gravity: f (R)

f (T ) action:

S =

∫
d4x e

[
f (T )

2
+ Lm

]
, e =

√
−g = det(eAµ)

Modified Friedmann equations:

H2 =
1

3
(ρm + ρT ), 2Ḣ + 3H2 = −1

3
(pm + pT )

with ρT = Tf ′(T )− f (T )

2
− T

2
, pT =

f − Tf ′(T ) + 2T 2f ′′(T )

2[f ′(T ) + 2Tf ′′(T )]
.

f (R) action:

S =

∫
d4x
√
−g
[
f (R)

2
+ Lm

]
Extended Friedmann equations:

H2 =
1

3

[
1

f ′
ρm + ρcurv

]
2Ḣ + 3H2 = −pm

f ′
− pcurv

with ρcurv =
1

2f ′
(f − Rf ′) − 3HṘ f ′′

f ′ , pcurv = 2HṘ f ′′

f ′ + R̈ f ′′

f ′ + Ṙ2 f ′′′

f ′ −
1

2f ′ (f − Rf ′)

[D’Agostino, Luongo, PRD, 98, 124013 (2018)]

[Abedi, Capozziello, D’Agostino, Luongo, PRD, 97, 084008 (2018)]
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A model-independent treatment: Cosmography

Reconstruction of the f (T ) and f (R) actions

Common strategy: Combining the Friedmann equations with initial conditions:

1 Geff ≡ GN/f
′(T ) =⇒ df

dz

∣∣∣∣
z=0

= 1, f (T (z = 0)) = f0 = 6H0
2(Ωm0 − 2)

2 Geff = GN/f
′(R) =⇒ f ′(R0) = 1 with f0 = R0 + 6H2

0 (Ωm0 − 1)

Moreover, considering the cosmographic H2,1(z) then:

Use T = −6H2 to find z(T ) and plug z(T ) into f (z) to find f (T ).
Use R = −6(Ḣ + 2H2) to get z(R) and plug into f (z) to obtain f (R).

Figure: Numerical reconstruction of f (T ) and f (R) through (2,1) Padé approximation of H(z).
[Aviles, Bravetti, Capozziello, Luongo, PRD, 87, 064025, (2013) & PRD, 90, 044016, (2014).]

[Capozziello, D’Agostino, Luongo, GeRG, 49, 141, (2017) & JCAP, 1805, 008, (2018).]
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Reinterpreting the ΛCDM model in a new way

A single matter-like fluid with pressure?

The effective representation of dust with pressure in a curved space-time is given by:

L1 = K (X , ϕ) + λY [X , ν (ϕ)] , (1)

L2 = −V eff (X , ϕ) . (2)

We require:

- There exists only one fluid, composed of BM and DM and vacuum energy.

- Matter is coupled to Λ through V eff (X , ϕ).

- The coupling should cancel vacuum energy through a first order phase transition.

- Thermodynamics naturally leads to a negative pressure.

- The phase during the phase transition produces (quasi)-particles of dark matter.

[Luongo, Quevedo, AstSpS, 338, 2, 345-349, (2012)]

[Luongo, Quevedo, GeRG, 46, 1649, (2014)]

[Dunsby, Luongo, Reverberi, PRD, 94, 083525, (2016)]

[Luongo, Muccino, PRD, 98, 103520, (2018)]

[Belfiglio, Luongo, Mancini, PRD, 105, 123523, (2022)]

[Belfiglio, Giambò, Luongo, ArXiv:2206.14158, Submitted to PRD, (2022)]
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Reinterpreting the ΛCDM model in a new way

A single matter-like fluid with pressure?

Our fluid consists of BM and DM, so:

L1 = KBM + KDM + λ (YBM + YDM) , (3)

The Lagrangian L2 models the coupling with quantum vacuum energy.

In a thermal bath → spontaneous symmetry breaking!

V eff(X , ϕ) = V0 +
χ

4

(
ϕ2 − ϕ2

0

)2

+
χ

2
ϕ2

0ϕ
2 T

2(X )

T 2
c

, (4)

where Tc = ϕ0

√
χ/g̃ is the critical temperature.

BT, T > Tc: the minimum is at ϕ = 0 and its value is V0 + χϕ4
0/4.

AT, T < Tc: the minimum is at ϕ = ϕ0 and its value is V0.

As Tαβ = 2XLX vαvβ −
(
K − V eff

)
gαβ =⇒ density and pressure are:

ρ (λ,X , ϕ) = 2XLX −
(
K − V eff

)
and P (X , ϕ) = K − V eff .

Y = 0 varying w.r.t. λ Lϕ −∇α (LX∇αϕ) = 0 varying w.r.t. ϕ
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Reinterpreting the ΛCDM model in a new way

Thermodynamics

Non-dissipative fluids are described by virtue of the pullback formalism through Carter’s covariant
formulation. Fluids are framed with four scalar fields, namely φa, a = 1, 2, 3. Fluids evolve as
comoving coordinates: φ0 is an internal time coordinate.

These scalars can be viewed as Stückelberg fields.

Consequently the shift symmetry is valid

ϕ→ ϕ+ c0

First principle, Gibbs-Duhem relation and Helmotz free-energy density:
dρ = Tds + µdn, dP = sdT + ndµ, df = µdn − sdT

Combining all together:

f = −L, s =
√

2XLX , T =
√

2X , µ = 0

fulfilling the conditions:

∂ (fV )

∂T

∣∣∣∣
V

= −
√

2XLXV = −sV ,
∂ (fV )

∂V

∣∣∣∣
T

= −L = −
(
K − V eff

)
= −P .

The above relations must be consistent with standard thermodynamics.

This naturally provides the sign of P at all times: f > 0→ P < 0
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Reinterpreting the ΛCDM model in a new way

Noether current and entropy

Dust-like matter having pressure naturally fixes the sign of P to be negative. This ensures no
need of putting by hand the sign of P inside Einstein’s equations.

Noether’s theorem

The global shift symmetry changes the matter Lagrangian density L1 mostly by a total
divergence.

We explicitly get:

L1

(
X ′, ϕ′

)
= L1

(
1

2
∇αϕ∇αϕ,ϕ+ c0

)
=

L1 (X , ϕ) + c0

[
∂L1

∂ϕ
−∇α

∂L1

∂ (∇αϕ)

]
+ c0∇α

∂L1

∂ (∇αϕ)
=

L1 (X , ϕ) + c0∇α
(
L1,X∇αϕ

)
, (5)

where, in the second line of Eq. (5), the quantity in the brackets identically vanishes in view of the
Euler–Lagrange equations.

The conserved current J α1 corresponds to the total divergence of Eq. (5). So

J α1 =
√

2X (KX + λYX ) vα
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Reinterpreting the ΛCDM model in a new way

Noether current and entropy

How do we deal with V eff?

before the transition (BT, with V eff = V0 + χϕ4
0/4 at ϕ = 0)

after the transition (AT, with V eff = V0 at ϕ = ϕ0)

During the two phases, the Noether’s theorem implies that:

L2

(
X ′

)
= −V eff(X )− c0∇α

(
V eff
X ∇αϕ

)
, (6)

where another conserved current from the total divergence of Eq. (6): J α2 = −
√

2XV eff
X vα, so

the total conserved current J α is the entropy density current sα = svα, namely J α ≡ J α1 +J α2 =√
2XLX vα = sα. Conserved currents imply

Lϕ = 0: The Lagrangian does not depend upon ϕ.

L (λ,X , ν) = K(X )− V eff(X ) + λY (X , ν)

We simply recover the standard Euler relation P + ρ = Ts +µn and recast the energy-momentum
tensor as: Tαβ = (Tsα + µnα) vβ+Pgαβ , where nα = nvα is the particle number density current.

The projection of the energy-momentum tensor conservation along vα, i.e., vα∇βTαβ = 0, leads
to T∇αsα + µ∇αnα = 0. So by virtue of the existence of J α, it reduces to µ∇αnα = 0, but
also µ = 0! =⇒ No particles produced, BT and AT!
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Reinterpreting the ΛCDM model in a new way

Properties of the fluid: Small perturbations

Main consequences
The conservation of the energy-momentum tensor can be recast by Carter-Lichnerowicz equations

nWανvν = nT∇ασ − ςα∇νnν

where Wαν = ∇νςα −∇αςν is the vorticity tensor, ςα = h/nvα the current of the enthalpy per
particle, and σ = s/n the entropy per particle. We immediately infer:

Wαν = 0 ⇒ the fluid is irrotational

∇ασ = 0 ⇒ the fluid is isentropic

Small perturbations
Conformal Newtonian gauge: ds2 = a(τ)2

[
(1 + 2Φ) dτ2 − (1− 2Φ) dx2

]
, with Φ is the Newto-

nian potential, τ = a(t)t the conformal time. The entropy perturbation shift, ∆, reads:

∆ =
(
δP
δρ
− c2

s

)
δρ
P

= −D(X )δν+E(X )δλ
P

Requiring YX 6= 0, we find:

1 c2
s ≡ 0 and P = const

2 Minimum of Gibbs energy =⇒ fluid at equilibrium.

3 P = const =⇒ T = const in the proximity of each minima of V eff .
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Solving the CC problem

What about quantum vacuum energy?

The cosmological constant problem Λ = ρvac + ΛB

Cancellation mechanism to remove ρvac =⇒ ΛB = ρobs
Λ = Λ today!

To solve this problem: What’s the role of V eff? We thus explore two possibilities:

1) V0 = −χϕ4
0/4, so BT we have V eff = 0 and hence

P1 =

{
K (BT)
K + χϕ4

0/4 (AT)
, (7)

ρ1 =

{
2XλYX − K (BT)
2XλYX − K − χϕ4

0/4 (AT)
, (8)

and since f > 0, then K < −χϕ4
0/4.

2) V0 = 0, so AT we have V eff = 0 and hence

P2 =

{
K − χϕ4

0/4 (BT)
K (AT)

, (9)

ρ2 =

{
2XλYX − K + χϕ4

0/4 (BT)
2XλYX − K (AT)

, (10)

and since f > 0, then K < 0.

In both cases K < 0, but with different magnitudes!
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Solving the CC problem

Focusing on the two cases

Case V0 = 0.

P2 ≈
{
−χϕ4

0/4 (BT)
K (AT)

, (11)

ρ2 =

{
(ρDM + ρBM) (1 + z)3 + χϕ4

0/4 (BT)

(ρDM + ρBM) (1 + z)3 − K (AT)
, (12)

where the BM can be considered even pressureless.

Vacuum energy density cancels without dark matter =⇒ discontinuity of V eff =⇒ This case
still suffers from coincidence as the ΛCDM model!

Case V0 = −χϕ4
0/4

P1 ≈
{

KDM (BT)
KBM (AT)

, (13)

ρ1 ≈
{

(ρDM + ρBM) (1 + z)3 − KDM (BT)

(ρDM + ρBM) (1 + z)3 − KBM (AT)
, (14)

where ρBM = 2Xλ0YBM,X and ρDM = 2Xλ0YDM,X are constants. A few consequences:

Since KDM ≈ −χϕ4
0/4 and KBM � KDM, vacuum energy is elided by dark matter.

As χ > 0, the sign of KDM is opposite to the vacuum energy term.
AT the Universe accelerates because of a ΛB ≈ −KBM contribution.
Coincidence and fine-tuning: Solved!
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Solving the CC problem

But... what about ΛB and cancelled density?

During the transition: Scalar field (inflaton) Lagrangian

L =
1

2

[
gµνφ,µφ,ν − ξRφ2 − 2V (φ)

]
=⇒ Vacuum energy drives inflation, Λ4 ∼ ρvac ∼ 1064 GeV

During inflation: a(τ) = 1/(1− HI τ) and conformal coupling, ξ = 1/6. Thus,

gµν = a2(τ) (ηµν + hµν(x)) with hµν(x) inflaton perturbations.

Quadratic hilltop potential, V (φ) = Λ4(1− φ2/µ2
2).

At first order in perturbations:
- Interacting Lagrangian: LI = − 1

2
HµνT

(0)
µν , with Hµν = a2(τ)hµν and T

(0)
µν zero-order

energy-momentum tensor.
- The scattering matrix, Ŝ ' 1 + i T̂

∫
d4x
√
g(0)LI .

=⇒ Interaction between field and geometry creates (quasi)-particles of geometry!

N(2)(τ∗) =
a−3(τ∗)

(2π)3

∫
d3k d3p |〈0|Ŝ |k, p〉|2
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Predicting (quasi)-particles of geometry

Interpreting (quasi)-particles as geometric dark matter

No couplings of the inflaton field with standard model fields are involved.
=⇒ We could interpret geometric particles in terms of dark matter candidates, arising

from field-curvature coupling.

1.5 2.0 2.5 3.0 3.5

10-7

10-5

0.001

0.100

μ2 (Mpl)

m
*
(G
eV

)

Predictions of dark matter
candidate!

Figure: Mass m∗ of the dark matter
candidate as function of the hilltop
parameter µ2.
Setting Λ4 = 1064, the predicted mass

range is 10−7 ≤ m? ≤ 10−1GeV

Vacuum energy cancellation: At the transition (τ = 0) between inflation and radia-
tion/matter epoch there is a pressure shift: ∆P ∝ −H2

I =⇒
This mimics a dark fluid with constant ∆P dominating at our times and:

1 If H2
I ≡ ΛB the cosmological constant problem is solved!

2 The Israel-Darmois junction conditions hold at τ = 0.
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Predicting (quasi)-particles of geometry

Geometric cosmological entanglement

Perturbations also create entanglement in the final state of the system of particles

|Ψ〉in = |0k ; 0p〉in −→ |Ψ〉out = N
(
|0k ; 0p〉in +

1

2
Ŝ

(1)
kp |1k ; 1p〉in

)

Entanglement can be quantified using von Neumann entropy S of the reduced density
operator

ρk = Trp (|Ψ〉out〈Ψ|) =⇒ S(ρk) = −Trk (ρk log2 ρk) 6= 0

Geometric (quasi)-particles of dark matter do not interact with other particles. So the
generated entanglement may be preserved to our time!

This may lead to:

Entanglement extraction.

Deduction of cosmological parameters.

Characterize dark matter nature.

Unify the dark sector.
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Final outlooks

Summary and perspectives

...Talk mainly based on:

Cosmography at low and high redshifts: No strong evidence for extending the ΛCDM model!

One dark fluid: Matter-like with pressure to resolve the cosmological constant problem.

Unifying the inflationary scenario: Predicting (quasi)-particles of geometry as dark matter.

...Perspectives and future developments mainly based on:

Testing new model-independent techniques: Cosmography at high redshifts with GRBs, σ8, GW.

Accretion disks in galaxies with (quasi)-particles of dark matter. Consequences in spiral galaxies.

Resolving the cosmological tensions adopting the here-proposed model.

Quantum information in geometric dark matter framework.
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